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Abstract: We introduce here a simple efficient Haar Wavelet Method for numerical solution of a class of Fuzzy Volterra integro-
differential equations of the second kind. The present technique depends on converting nonlinear Fuzzy Volterra integro-differential
equations into to system of algebraic equations which solved by using a suitable numerical method. Numerical examples are given to
delineate efficiency and accuracy of the present technique. Comparison of the results is gotten by the Haar Wavelet Method with the
exact solution.
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1 Introduction

The significance of fuzzy integro-differential equations (FIDEs) have stimulated a large amount of research work in
recent years. Nonlinear phenomena that appear in many applications in mathematics, physical and engineering can be
modeled by FIDEs. Many experts in such areas extensively use FIDEs to make some problems under study more
understandable. Usually, data about these problems involved is pervaded with uncertainty, which can arise in the
experiment part, data collection, measurement process as well as the initial values are determined. Classical mathematics
cannot cope with this situation. Therefore, it is necessary to have some mathematical apparatus in order to understand
this uncertainty [1]. Besides, fuzzy calculus theory is a powerful tool for modeling uncertainty and processing vague of
subjective information in mathematical models. Their main directions of development have been diverse and its
applications to the very varied real problems, including the golden mean, particle systems, quantum optics and chaotic
system [2,6]. The reader is asked to refer to [7,10] to know more details about integral equations.
The numerical solvability of fuzzy initial value problems (FIVPs) have discussed recently by many authors [11,12] but,
generally, investigation about a fuzzy IDEs is scarce, especially, discussion on a nonlinear case. However, FIDEs are
almost impossible to solve as well as do not always have solutions by using analytical or semi-analytical techniques.
Therefore, it is necessary to develop new numerical techniques to approximate the solution for the FIVPs. In this paper,
we extend the application of the Haar Wavelet Method to provide symbolic approximate solution for fuzzy Volterra
integro-differential equations.
The structure of this paper is organized as follows; In section 2, some preliminaries of fuzzy integral equation are
presented. In section 3, the FVIDE are discussed. In section 4, Analysis of Haar Havelet Method then we use it for
finding the numerical solution of FVIDE. In section 5, the proposed methods are implemented for solving two illustrative
examples. Finally, conclusion is provided in section 6.
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2 Preliminaries of Fuzzy Integral Equation

In this section we give some preliminaries and notations used in fuzzy calculus. We start by defining the fuzzy number.

Definition 1. A fuzzy number is a fuzzy set y : R1→ E1 = [0,1] which satisfying the following properties.

(i) y is upper semi continuous on R,
(ii) The support {u ∈ R|y(u)> 0}is a compact set,
(iii) yis a fuzzy convex set (i.e., y(λu+(1−λ )v)≥min{y(u),y(v)}∀u,v ∈ R,λ ∈ [0,1]),
(iv) There are real numbers aand b,c≤ a≤ b≤ d, for which
(a) y(u)is monotonically increasing on [c,a],
(b) y(u)is monotonically decreasing on [b,d],
(c) y(u) = 1for a≤ u≤ b.
The set of all the fuzzy numbers is denoted by E1 is given by Kaleva [13].

Definition 2. A fuzzy number y is represented by an ordered pair of (y(r), ȳ(r)) of functions y(r)and ȳ(r), 0≤ r≤ 1 which
satisfying the following conditions.

1. y(r) is a bounded monotonically increasing, left continuous function on (0,1] and right continuous at 0,
2. ȳ(r) is a bounded monotonic decreasing, left continuous function on (0,1] and right continuous at 0,
3. u(r)≤ū(r),0 ≤ r ≤ 1.

A crips number r is simply represented by u(α)=ȳ(α)=r,0 ≤α≤ 1. This fuzzy number space can be embedded into the
Banach space B = C̄[0,1]×C̄[0,1].
For arbitrary y(r)=(y(r),ȳ(r)), x(r)=(x(r),x̄(r)), and k > 0 we define addition (x+ y)and scalar multiplication by k as,

1.(x+ y)(r)=x(r)+y(r),
2.(x+ y)(r) =x̄(r)+ȳ(r),
3.(k x)(r)= k x̄(r),(k x)(r) = kx(r) if k < 0,
4.(k x)(r)=kx(r),(k x)(r) = k x̄(r) if k ≥ 0.

Definition 3. Let f : [a,b]→ E1 be a bounded function. Then the function

ϕ[a,b]( f ,δ ) = sup{D( f (x), f (y)); x,y ∈ [a,b], |x− y| ≤ δ ,}

is called the modulus of continuity of f on [a,b].

Definition 4. Let F : [a,b]→ E1. For each partition P = {t0, t1, . . . , tn} of [a,b] and for arbitrary ξi ∈ [ti−1, ti], 1 ≤ i ≤ n
suppose,

RP =
n

∑
i=1

F(ξi)(ti− ti−1), ∆ := {|ti− ti−1|, i = 1, . . . ,n} .

The definite integral F(t)over [a,b] is
∫ b

a F(t)dt = lim
∆→0

RP.

If the fuzzy functionF(t)is continuous function in the metric D, its definite integral exists. Also,(∫ b

a
F(t ;α)dt

)
=
∫ b

a
F(t ;α)dt,

(∫ b

a
F(t ;α)dt

)
=
∫ b

a
F(t ;α)dt,

where F(t,r), F̄(t,r) is the parametric form of F(t). It should be noted that the fuzzy integral can be also defined by using
the Lebesgue-type approach [14]. However, if F(t)is continuous, both approaches yield the same value.
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Lemma 1. [15] If f and gare Henstock integrable functions and if the function given by D( f (t),g(t)) is Lebesgue
integrable, then,

D
(
(FH)

∫ b

a
f (t)dt,(FH)

∫ b

a
g(t)dt

)
≤ (L)

∫ b

a
D( f (t),g(t))dt.

Definition 5. [16] A function F : (a,b)→ E1is called H-differentiable at t ∈ (a,b) if, for h > 0 sufficiently small, there
exist the H-differences F(t +h)−F(t), F(t)−F(t−h) and an element F ′(t) ∈ E1 such that

lim
h→0+

D
(

F(t +h)−F(t)
h

,F ′(t)
)
= lim

h→0+
D
(

F(t +h)−F(t)
h

,F ′(t)
)
= 0.

Then F ′(t) is called the fuzzy derivative of Fat t.

Definition 6. [17] Let I be a real interval. A mapping v̄ : I → E is called a fuzzy process and we denote the r− set by
[y(t)]r = [y(t,r), ȳ(t,r)]. The seikkala derivative ỹ/ of ỹis defined by [y/(t)]r = [y/(t,r), ȳ/(t,r)],provided that is an equation
defines a fuzzy number ỹ/(t) ∈ E.

Definition 7. [17] The fuzzy integral of a fuzzy process ỹ,
∫ b

a y(t)dtfor a,b ∈ I and I be a real interval is defined by
[
∫ b

a y(t)dt]r =[
∫ b

a y(t,r)dt,
∫ b

a ȳ(t,r)dt],provided that the Lebesgue integrals on the right exist.

Theorem 1.(i) The pair (E,+)is a commutative semi group with 0̃ = χ{0} zero element,
(ii) At fuzzy number which are not crisp, there is no opposite element (that is, (E,+) cannot be a group)
(iii) At any λ ∈ R with a,b≥ 0or a,b≤ 0, and for any x ∈ E, we have(a+b)× x = (a× x+b× x),
(iv) At any λ ∈ R and x,y ∈ E we have λ × (x+ y) = λ × x+λ × y,
(v) At any λ ,µ ∈ R and u ∈ E we have λ × (µ× x) = (λ ·µ)× x,
(vi) The function ‖ .‖E : E→ R+

⋃
{0} has the usual properties of the norm, so ‖x‖E = 0 if u = 0̃,‖λ × x‖E = |λ | ‖x‖E +

‖y‖E for any x,y ∈ E,
(vii) |‖x‖E −‖y‖E | ≤ D(x,y) and D(x,y)≤ |‖x‖E +‖y‖E | for any x,y ∈ E.
Since (E,+)is not a group, but only a commutative monoid, the structure (E,+,×,‖ .‖E)is not normed space.

3 Fuzzy Volterra integro-differential equations

We consider the VIDE of the form

y′(x) = f (x,y(x))+λ

∫ x

0
k(x, t)y(t)dt,y(t0) = y0, (1)

where λ > 0, k(t,s) is an arbitrary kernel function and f (x,y(x))+λ
∫ x

0 k(x, t)y(t)dt is a continuous fuzzy function. We
assume that λ > 0. In order to design a numerical scheme for solving equation (1) we write the parametric form of the
given equation (1) as follows

y′(x,r) = f (x,y(x,r),y(x,r))+λ

∫ x

0
U(t,r)dt, (2)

y ′(x;r) = f (x,y(x,r),y(x;r))+λ

∫ x

0
U(t,r)dt,

where

U(t,r) = k(t,s)y(s;α) =

{
k(x, t)y(t,r), k(x, t)≥ 0
k(x, t)y(t,r), k(x, t)< 0,
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and

U(t,r) = k(x, t)y(s;r) =

{
k(x, t)y(t,r), k(x, t)≥ 0
k(x, t)y(t,r), k(x, t)< 0.

(3)

We can see that Eq (2) is a system of FVIDE for each 0≤ α ≤ 1 and a≤ t ≤ b.

4 Haar Wavelet Method

In this section, The Haar functions are an orthogonal family of switched rectangular waveforms where amplitudes can
differ from one function to another.

Definition 8. The Haar Wavelet family is defined over the interval [0,1] as follows

hi(x) =


1 α ≤ x < β

−1 β ≤ x < γ

0, elsewhere.
(4)

Where α = k
m , β = k+0.5

m , and γ = k+1
m . The integer m = 2 j, j = 0,1,2, . . . ,J, indicates the level of the wavelet, and

k = 0,1,2, . . . ,m−1 is the translation parameter. Maximal level of resolution is the integer J. The index i is calculated
according to the formula i = m+ k+1. In case of minimal values m = 1, k = 0. we have i = 2; The maximal value of i
in is i = 2M = 2J+1. It is assumed that for value i = 1, the corresponding scaling function in [0,1] is as

h1 (x) =

{
1, 0≤ x≤ 1,
0, elsewhere.

(5)

Let us define the collocation points xl =
l−0.5

2M , where l = 1,2, . . . ,2M and discretize the Haar function hi (x). The Haar
coefficient matrix is defined as HAAR(i, l) = hi (xl) which is a square matrix of order 2M×2M.

4.1 Method of solution

We can assume that H ∈ L2[0, 1) is a Hilbert space with the inner product defined by 〈 f (x),h〉=
∫ 1

0 f(x)hT (x)dx since V
is a finite-dimensional bspace of H, it is closed and convex. Thus, for w ∈ H,there are a unique approximation out of V
such as g,

‖w−g‖ ≤ ‖g−w‖ ,∀h ∈V.

Since g ∈V, there exist a unique coefficient c1,c2, ....,c2M such that

f (x) =
2M

∑
i=0

ci hi (x) , (6)

where the Haar Wavelet Method coefficients are given by ci =
( f (x),h(µ)(x))

(h(µ)(x),h(µ)(x))
such that ( . , .)denotes the inner product.

where µ = 2M = 2J+1 , Cand h(x) are 1×2M matrices given by

C = [c1,c2,c3, . . . . . . ,c2M],h(2M) (x) = [h1 (x) h2 (x) . . . h2M (x)]. (7)
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We can also approximate the function k(x, t) ∈ L2[0, 1)× [0, 1) as follows

k(x, t)∼= hT
(2M) (x) K h(2M) (x) , (8)

where K is an 2M×2M matrix that we can obtain as

K =
(h(2M) (x) ,(k(x, t),h(2M) (t))

(h(2M) (x) ,h(2M) (x))(h(2M) (t) ,h(2M) (t)).
(9)

4.2 Operational matrix of integration

The vector integration h(µ) (τ) is given by

∫ x

0
h(µ) (τ) dτ ≈ P(µ×µ) h(µ) (x) . (10)

Where P(µ×µ) is the 2M×2M operational matrix for integration. Carrying out these integrations with the aid of (10) we
find

Pi,1 (x) =


x−α xε[α,β )

γ− x, xε [β ,γ)

o, elsewhere,

(11)

Pi,2 (x) =


1
2 (x−α)2, xε [α,β )

1
4m2 − 1

2 (γ− x)2, xε [β ,γ)
1

4m2 , xε [γ,1)
o, elsewhere,

(12)

Pi,3 (x) =


1
6 (x−α)3, x,ε [α,β )

1
4m2 (x−β )− 1

6 (γ− x)3, xε [β ,γ)
1

4m2 (x−β ) , xε [γ,1)
o, elsewhere ,

(13)

Pi,4 (x) =


1
24 (x−α)4, xε [α,β )

1
8m2 (x−β )2− 1

24 (γ− x)4 + 1
192m4 , xε [β ,γ) ,

1
8m2 (x−β )2 + 1

192m4 xε [γ,1)
o, elsewhere.

(14)

The Heaviside step function F (x) is defined as

f (x) =

{
1, x≥ 0
0, x < 0.

By using Heaviside step function, we can also write

hn (x) = F
(

x− k
2 j

)
−2F

(
x− k+0.5

2 j

)
+F

(
x− k+1

2 j ,

)
, (15)

n = 2 j + k, j,k ∈ N∪{0} , 0≤ k ≤ 2 j.
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4.3 The integration of the cross product

The integration of the cross product of two Haar Wavelets vectors can be obtained as

D =
∫ 1

0
h(i) (τ) hT

(l) (τ)d (τ) =

{
1
m , i = l
0, i 6= l.

(16)

We discretize the functions h(i) (x) by dividing the interval x∈ [0,1] into 2M parts of equal length ∆x= 1
2M and introduce

the collocation points

xi =
i− 1

2
2M

, i = 1,2, . . . ,2M.

4.4 Multiplication of Haar Wavelet Method

It is always necessary to evaluate the product of h(µ) (x) and hT
(µ) (x), that is called the product matrix of Haar Wavelet

Method. Let
M(x)∼= h(µ) (x) hT

(µ) (x,)

, where M(x) is 2M×2M matrix. Multiplying the matrix M(x)by vector C we obtain

M (x)C = C̃h(µ) (x) , (17)

where C̃ is 2M×2M matrix and called the coefficient matrix. Let Ris 2M×2M matrix. Multiplying the matrix Rby vector
h(µ) (x) and multiplying the matrix h(µ) (x) by the resulted matrix R h(µ) (x), we obtain

hT
(µ) (x) R h(µ) (x) = R̃h(µ) (x) . (18)

where R̃ is 1× 2M matrix and called the coefficient matrix With the powerful properties of (17). We can achieve R̃by
away like C̃ we can convert the Volterra part of integral and Integro-Differential equations System equations to an algebraic
equation.

4.5 Error analysis

Let y(x) is the exact solution and ym(x) is the approximate solution of fuzzy Volterra integro-differential equations.
ERRORm(x) be the corresponding error function and is defined as,

ERRORm (x) = |y(x)− ym(x)| ∼=
∞

∑
j=J+1

2 j−1

∑
k=0

c2 j+k h2 j+k(x), x ∈ [0, 1].

Theorem 2. Suppose that y(x) satisfies a Lipschitz’s condition on [0, 1], then there exists constant K > 0 (dependent on
both y(x) and interval), such that

|y(x1) − y(x2)| ≤ K|x1 − x2|, ∀x1, x2 ∈ [0, 1].
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The Haar Wavelet Method will be convergent in the sense that ERRORm(x)goes to zero as m goes to infinity. The order of
convergence is

‖ERRORm (x)‖2 = 0(
1
m
).

Proof. Squaring the integrand and breaking the summation

‖ERRORm (x)‖2
2 =

∫ 1

0
(

∞

∑
j=J+1

2 j−1

∑
k=0

c2 j+k h2 j+k(x))

2

dx,

we obtain

‖ERRORm (x)‖2
2 =

∞

∑
j=J+1

2 j−1

∑
k=0

c2
2 j+k

∫ 1

0
h2

2 j+k (x)dx

+
∞

∑
j=J+1

2 j−1

∑
k=0

∞

∑
p=J+1

2p−1

∑
q=0, q6=k

c2 j+k c2p+q

∫ 1

0
c2 j+kc2p+q(x)dx.

Using orthogonality properties, we obtain

‖ERRORm (x)‖2
2 =

∞

∑
j=J+1

2 j−1

∑
k=0

c2
2 j+k

(
1
2 j

)
,

for i = 2 j + k, we obtain

c2 j+k = 2 j
∫ 1

0
y(x)h2 j+k (x)dx.

From mean value theorem, there exist two points described below

x jk
11 ∈

(
k
2 j ,

k+0.5
2 j

)
,x jk

22 ∈
(

k+0.5
2 j ,

k+1
2 j

)
,

so

c2 j+k = 2 j[(

(
k+0.5

2 j − k
2 j

)
y
(

x jk
11

)
+

(
k+1

2 j −
k+0.5

2 j

)
y(x jk

22),

using Lipschitz’s condition, we obtain

c2 j+k =
1
2
[y
(

x jk
11

)
− y(x jk

22)]≤
1
2

k(x jk
11− x jk

22)]≤ (
1
2
)k
(

1
2 j )
∼= k(

1
2 j+1

)
,

so

‖ERRORm (x)‖2
2 =

∞

∑
j=J+1

2 j−1

∑
k=0

k2 1
22J+2 (

1
22J ) =

k2

4

∞

∑
j=J+1

2J
(

1
23J

)
,

we obtain

‖ERRORm (x)‖2
2 =

k2

3
(

1
2J +1

)
2
.

But, m = 2J +1, therefore, we obtain

‖ERRORm (x)‖2 = 0(
1
m
).

Thus, when m goes to infinity, then ERRORm (x)tends to zero.
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4.6 Solving Fuzzy Volterra integro-differential equations by Haar Wavelet Method

In this section, we introduce an approximation method (Haar Wavelet Method) to solve the Volterra integro-differential
equations in the form

y′(x) = f (x,y(x))+λ
∫ x

0 k(x, t)y(t)dt, a≤ x≤ b,
y(x0) = y0,

(19)

where f (x,y(x)) ∈ L2([0,1)), k(x, t) ∈ L2([0,1))×L2([0,1)) with a = 0, b = 1 andλ > 0.
(0≤ r ≤ 1) is an arbitrary kernel function and y(x) is the unknown fuzzy real valued function.
We write the parametric form of the given fuzzy integral equations system as follows

y′(x,r) = f (x,r)+λ

∫ x

0
k(x, t)y(t,r)dt,

y ′(x,r) = f (x,r)+λ

∫ x

0
k(x, t)y(t,r)dt, (20)

where

k(x, t)y(t,r) =

{
k(x, t)(y(t,r)) k(x, t)≥ 0
k(x, t)(ȳ(t,r)) k(x, t)< 0,

and

k(x, t) ȳ(t,r) =

{
k(x, t)(ȳ(t,r)) k(x, t)≥ 0
k(x, t)(y(t,r)) k(x, t)< 0.

(21)

We can approximate the function y(x,r), ȳ(x,r), f (x,r), f̄ (x,r) and k(x, t)by Haar Wavelet Method as follows

y(x,r)≈ hT
(µ)
(x)Y1 h(µ) (r) , ȳ(x,r)≈ hT

(µ)
(x)Y2 h(µ) (r) ,

f (x,r)≈ hT
(µ)
(x) F1 h(µ) (r) , f̄ (x,r)≈ hT

(µ)
(x)F2 h(µ) (r) , (22)

k(x, t)≈ hT
(µ)
(x)K h(µ) (t) , y/(x,r)≈ h(µ) (r) Y /

1
T

h(µ) (x) ,

y/(x,r)≈ h(µ) (r) Y /T h(µ) (x) .

Which y/(x,r) and y/(x,r)will be evaluated in terms y(x,r) and ȳ(x,r)

y(x,r) =
∫ x

0
y/(t,r)dt + y(0).

If we expand y(0)with Haar Wavelet Method basis i.e. y(0) = Y0 h(µ) (x) then Y0 is obtained as

Y0 =

︷ ︸︸ ︷
y(0), y(0), ..., y(0), ......,

︷ ︸︸ ︷
y(0), y(0), ..., y(0)︸ ︷︷ ︸

2M

,

 (23)

Y T
1 h(µ) (x) ∼=

∫ x

0
Y /

1
T

h(µ) (t)dt +Y T
0 h(µ) (x) ,

∼= Y /
1

T
∫ x

0
h(µ) (t)dt +Y T

0 h(µ) (x) ,
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∼= Y /
1

T
P(µ×µ) h(µ) (x)+Y T

0 h(µ) (x) ,

∼= (Y /
1

T
P(µ×µ) +Y T

0 ) h(µ) (x) ,

and we have
Y T

1
∼= Y /

1
T

P(µ×µ) +Y T
0 . (24)

Therefore,
Y /

1
∼= (pT

(µ×µ)
)−1(Y1 −Y0). (25)

After substituting the approximate equations (22), (28) into equations (20) and (21), we get

hT
(µ)
(x) (pT

(µ×µ)
)−1(Y1 −Y0)h(µ) (r) = hT

(µ)
(x) F1 h(µ) (r)

+λ
∫ x

0 hT
(µ)
(x) K h(µ) (t) hT

(µ)
(t) Y1 h(µ) (r) dt ,

hT
(µ)
(x) (pT

(µ×µ)
)−1(Y2 −Y0)h(µ) (r) = hT

(µ)
(x) F2 h(µ) (r)

+λ
∫ x

0 hT
(µ)
(x) K h(µ) (t) hT

(µ)
(t) Y2 h(µ) (r) dt.

(26)

We have
hT
(µ)
(x) (pT

(µ×µ)
)−1(Y1 −Y0)h(µ) (r) = hT

(µ)
(x) F1 h(µ) (r)

+λ hT
(µ)
(x) K

∫ x
0 h(µ) (t) hT

(µ)
(t)dt Y1 h(µ) (r) ,

hT
(µ)
(x) (pT

(µ×µ)
)−1(Y2 −Y0)h(µ) (r) = hT

(µ)
(x) F2 h(µ) (r)

+λ hT
(µ)
(x) K

∫ x
0 h(µ) (t) hT

(µ)
(t)dt Y2 h(µ) (r),

with the powerful properties of equation (10) we get

hT
(µ)
(x) (pT

(µ×µ)
)−1(Y1 −Y0)h(µ) (r) = hT

(µ)
(x) F1 h(µ) (r)

+λ hT
(µ)
(x) K Ỹ1 P(µ×µ) h(µ) (x) h(µ) (r) ,

hT
(µ)
(x) (pT

(µ×µ)
)−1(Y2 −Y0)h(µ) (r) = hT

(µ)
(x) F2 h(µ) (r)

+λ hT
(µ)
(x) K Ỹ2 P(µ×µ) h(µ) (x) h(µ) (r) .

(27)

Therefore
(pT

(µ×µ)
)−1(Y1 −Y0) = F1 h(µ) (r) +λ hT

(µ)
(x) K Ỹ1 P(µ×µ) h(µ) (x) h(µ) (r) , (28)

(pT
(µ×µ)

)−1(Y2 −Y0) = F2 h(µ) (r)+λ hT
(µ)
(x) K Ỹ2 P(µ×µ) h(µ) (x) h(µ) (r) . (29)

Where, the dimensional subscripts have been dropped to simplify the notation. Rewriting (29), we have

Y1 = pT
(µ×µ)

(F1 h(µ) (r) +λ hT
(µ)
(x) K Ỹ1 P(µ×µ) h(µ) (x) h(µ) (r))+Y0,

Y2 = pT
(µ×µ)

( F2 h(µ) (r)+λ hT
(µ)
(x) K Ỹ2 P(µ×µ) h(µ) (x) h(µ) (r))+Y0. (30)

From (30) we have a system of 2M× 2M nonlinear equations and 2M unknowns. After solving above nonlinear system
using Newton method. We can achieve the unknown vectors Y1 and Y2. The required approximated solutions. y(x,r) ≈
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hT
(µ)
(x) Y1 h(µ) (r), ȳ(x,r) ≈ hT

(µ)
(x) Y2 h(µ) (r) for the nonlinear Fuzzy Fredholm integro-differential Equations (20) and

(21).

5 Numerical examples

In this section, we give the approximate solution of linear and nonlinear FVIDE by using the Haar Wavelet Method.

Example 1. Consider the following linear FVIDE

y′(t,r) = (0.5+0.5r)(et − t)+
∫ t

0 xt y(x,r)dx
y′(t,r) = (2− r)(et − t)+

∫ t
0 xt y(x,r)dx,

y(0) = 0.5+0.5r, y(0) = 2− r, 0≤ r ≤ 1, 0≤ x≤ t, t ∈ [0,1].
(31)

The exact solution is given by y(t,r) = (0.5+0.5r)et , y(t,r) = (2− r)et .

The exact and obtained approximate solutions of FVIDE are compared in Table 1.

Table 1: Table to test captions and labels

x Exact solution Haar Wavelet
Method
solution
at 2M = 8

Absolute error
at 2M = 8

Absolute error
at 2M = 16

0.1 0.9983341665 0.9983341428 2.37×10−8 4.61×10−14

0.2 0.9933466540 0.9933467756 1.260×10−7 7.02×10−14

0.3 0.9850673556 0.9850674729 1.173×10−8 2.35×10−14

0.4 0.9735458558 0.9735458342 2.161×10−8 5.11×10−14

0.5 0.9588510772 0.9588503494 7.278×10−8 2.73×10−13

0.6 0.9410707892 0.9410707712 1.80×10−8 6.35×10−13

0.7 0.9203109820 0.9203110906 1.086×10−7 1.05×10−11

0.8 0.8966951136 0.8966952102 9.66×10−8 3.24×10−11

0.9 0.8703632328 0.8703632216 1.12×10−8 4.01×10−11

Example 2. We consider the following linear FVIDE

y′(x,r) = (r−1)+
∫ x

0 y(t,r)dt,
y′(x,r) = (1− r)+

∫ x
0 y(t,r)dt,

y(0) = 0; y(0) = 0; 0≤ r ≤ 1, 0≤ t ≤ x.

(32)

The exact solution is given by y(x,r) = (r−1)sinh(x); y(x,r) = (1− r)sinh(x).

Table 2 compare the maximum absolute errors of Haar Wavelet Method at different values of M. These results have
been included to demonstrate the validity and capability of Haar Wavelet Method, for a certain value of M increases, the
accuracy increases and the numerical results obtained for this example are highly agreed with the exact results.
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Table 2: Error of y(x,r) and y(x,r) of Example 2

x Absolute error
of y(x,r)using
Haar Wavelet
Method at
2M = 8

Absolute error
of y(x,r)using
Haar Wavelet
Method at
2M = 8

Absolute error
of y(x,r)using
Haar wavelet
method at
2M = 16

Absolute error
of y(x,r)using
Haar Wavelet
Method at
2M = 16

0.1 4.205×10−6 2.876×10−6 1.11×10−9 1.02×10−9

0.2 5.305×10−6 1.836×10−6 3.15×10−9 4.19×10−9

0.3 2.07×10−6 1.295×10−6 1.04×10−9 3.01×10−9

0.4 3.11×10−6 8.303×10−6 2.07×10−9 2.09×10−9

0.5 1.320×10−5 5.442×10−5 7.44×10−9 1.05×10−8

0.6 4.351×10−5 9.314×10−5 1.36×10−9 4.01×10−8

0.7 4.130×10−5 8.874×10−5 6.23×10−9 3.04×10−9

0.8 1.025×10−5 5.862×10−5 6.53×10−8 4.03×10−8

0.9 9.04×10−5 4.542×10−5 3.22×10−8 2.05×10−8

6 Conclusion

We used an appropriate technique for finding the approximate solution of FVIDE. The results show that the resolved
method is a promising tool for this type of fuzzy integral equations. In this paper, a new technique based on the Haar
Wavelet Method was developed. For this aim, we compute operational matrices and apply them for solving FVIDE. These
polynomials have some advantage to other polynomials, for example these polynomials are orthonormal. Thus, coefficient
of expansion can be calculated easily. By applying these matrices and collocation method FVIDE convert to linear systems
of algebraic equations which can be solved by a suitable numerical method. Also, the errors of the present method were
investigated. In section 5, we solved two examples by proposed technique that numerical result is performed on computer
by using a program written in Maple.
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